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We investigated whether visual complexity of novel
abstract patterns affects perceived duration. Previous
research has reported that complex visual stimuli led
to an underestimation of durations. However, to
clarify the nature of the time estimation process, it is
necessary to establish which component of image
complexity, spatial or semantic, plays the critical role.
Here we tested the impact of specific spatial
properties. We used unfamiliar and abstract patterns
made using black-and-white checkerboards in which
the difference between stimuli was exclusively in
configuration. Visual complexity was quantified by the
GIF index based on a compression algorithm, which
scanned the pattern in both horizontal and vertical
directions. This metric correlated positively with
subjective complexity (Experiment 1A). In the second
study, we increased variability in the stimuli by
changing the number of items across patterns while
keeping overall size constant. A high positive
correlation was found between objective and
subjective complexity (r ¼ 0.95) (Experiment 2A). In
Experiments 1B and 2B, observers estimated pattern
durations in seconds using a continuous scale. A
multilevel linear analysis found that perceived
duration was not predicted by visual complexity for
either of the two sets of stimuli. These results provide
new constraints to theories of time perception,
hypothesizing that complexity leads to an
underestimation of duration when it reduces attention
to time.

Introduction

A visual scene can be perceived as more or less
complex depending on multiple factors, including the
type and amount of elements it contains and their
spatial layout. Some studies have reported that visual
complexity influences the perception of stimuli dura-
tion (Cantor & Thomas, 1977; Cardaci, Di Gesù,
Petrou, & Tabacchi, 2006, 2009; Folta-Schoofs, Wolf,
Treue, & Schoofs, 2014; Hogan, 1975). Importantly, no
study has distinguished between visual and semantic
components to establish their effect on perceived
duration. This is important because an effect of
perceptual complexity would help to clarify how time is
evaluated. The current study aimed to (a) define and
quantify visual complexity for a specific class of
abstract unfamiliar stimuli and (b) examine the
influence of visual complexity on perceived duration.

Time perception and biases: The
role of image complexity

For any perceived image, observers analyze spatial
properties, but they can also simultaneously process
presentation duration. The way these two aspects
interact is still relatively unknown. Research on time
perception has not yet clarified precisely how people
judge duration (see Merchant, Harrington, & Meck
2013, for a recent discussion). Cognitive psychology
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has applied an information-processing framework,
which proposes an internal clock as a central mecha-
nism to estimate stimulus duration (Gibbon, Church, &
Meck, 1984; Meck, 2003; Wearden, 2003). According
to Scalar Expectancy Theory (Gibbon et al., 1984)
duration is processed by a pacemaker-accumulator
clock in which pulses are transferred from the
pacemaker to the accumulator via a switch between the
two. When attention is paid to time, the switch is closed
and accumulation occurs; when no attention is paid to
time, the switch is open and accumulation ceases.
Duration judgments are based on the number of
accumulated pulses.

Two main factors are known to influence subjective
duration: arousal and attention. Changes in arousal
following drug administration (Meck, 1983), tempera-
ture change (Wearden & Penton-Voak, 1995), emo-
tional stimulation (Droit-Volet, Brunot, & Niedenthal,
2004), and repetitive prestimulation (Penton-Voak,
Edwards, Percival, & Wearden, 1996) have been found
to alter subjective duration by changing pacemaker
speed. Increases in arousal increase the rate at which
pulses are emitted from the pacemaker; thus, more
pulses are accumulated within the same physical time
unit, and subjective time lengthens. Although many
studies have attributed increases in subjective duration
to increases in arousal, arousal is not precisely defined
within the timing literature (Angrilli, Cherubini,
Pavese, & Manfredini, 1997; Droit-Volet, 2003; Droit-
Volet & Gil, 2009; Fox, Bradbury, Hampton, & Legg,
1967; Rose & Summers, 1995; Tse, Intriligator, Rivest,
& Cavanagh, 2004).

It is also known that when attention is diverted
away from timing, duration is underestimated (Zakay
& Block, 1997). Processing other stimulus attributes
(i.e., nontemporal elements of the to-be-timed stimu-
lus) or additional stimuli (i.e., secondary tasks) diverts
attention away from the internal clock. This causes
the connector between the pacemaker and the
accumulator to open; consequently, there is a loss of
time units, and perceived duration is underestimated
(Buhusi & Meck, 2006). Evidence for this comes from
dual-task paradigms in which participants simulta-
neously complete timing and nontiming tasks (Brown,
2006, 2008; Ogden, Salominaite, Jones, Fisk, &
Montgomery, 2011; Zakay, 1998) and from compar-
isons of the perceived duration of relatively more or
less attention-grabbing stimuli (Gil, Rousset, & Droit-
Volet, 2009).

The complexity of the stimulus being timed can also
divert attention away from timing and thereby alter
subjective duration (Cantor & Thomas, 1977; Folta-
Schoofs et al., 2014; Hogan, 1975). Hogan (1975) used
color slides of line drawings and abstract paintings. The
number of each drawing’s interior angles defined five
levels of complexity. He applied a time interval

estimation procedure in which he first presented a
standard slide (moderate complexity; 15 s), followed by
a test slide (more or less complex than the standard
one; 15 s). Participants indicated whether the time
interval of the test slide was shorter, equal to, or longer
than the interval of the standard slide. The result was
that stimuli that are both the least and most complex
were experienced as lasting for more time than stimuli
of moderate complexity.

Thomas and Cantor (1975) found that perceived
duration increased with the size of circles. Cantor and
Thomas (1977) examined both the area and the
perimeter of checkerboard patterns (see Figure 1).
They found that perceived duration increased with an
increase in area but decreased with an increase in
perimeter. Cardaci et al. (2006) developed a fuzzy
model of complexity based on local and global spatial
features extraction defined by an entropic distance
function. The authors used perceived time as an
indirect measure of complexity. In line with the
attentional model, they found that paintings (an
illustration of the stimuli used by Cardaci et al., 2006,
is provided in Figure 1) with a high entropic
complexity level generated shorter estimations of
perceived time. Some years later, the same authors
confirmed a relationship between the visual complex-
ity of high-semantic heterogeneous paintings (selected
from the stimuli range of the previous study) and their
perceived duration (Cardaci et al., 2009). Visual
complexity for this class of stimuli was computed by
objective local features algorithms, which extract
information about edges and symmetries. However,
the authors did not focus on subjective evaluation of
complexity. In line with their previous work, they
found that paintings with high complexity levels were
perceived as being exposed for a shorter period of
time. Similarly, Folta-Schoofs et al. (2014) observed
that high-complexity distractors, presented during the
reproduction of a previously learned duration,
lengthened reproductions to a greater extent than low-
complexity distractors. Here complexity was defined
by subjective ratings of the amount of detail or
intricacy of lines in the picture. Folta-Schoofs et al.
suggest that high-complexity distractors detracted
attention away from timing, affecting switch opera-
tion and reducing the accumulation of pulses from the
pacemaker.

In summary, arousal and attention are associated
with opposite effects on perceived duration. Arousal
elongates subjective duration, and visual complexity
takes attention away from timing and shortens
subjective duration. So far, this has been found mainly
with stimuli containing a certain amount of semantic
content and therefore possible memory associations or
in dual tasks (i.e., judging the intensity and the
duration of a stimulus). One exception is the recent
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work by Aaen-Stockdale, Hotchkiss, Heron, and
Whitaker (2011). The authors tested the role of spatial
frequency on estimated durations using an oddball
paradigm. Typically, the duration of unexpected
oddball stimuli is overestimated relative to the
expected or standard stimuli (Tse et al., 2004). Aaen-
Stockdale et al. showed a standard stimulus for 320 ms
followed by a blank screen of variable interstimulus
interval and then the oddball stimulus ranging
between 260 and 380 ms at incremental steps of 20 ms.
They found midrange spatial frequencies (2 c/8) of the
oddball stimulus to be judged as longer in duration
than high (8 c/8) or low (0.5 c/8) frequencies, and this
was irrespective of oddball-related temporal expan-
sion. This study suggests that the relationship between
spatial frequency and perceived duration may not be
linear and that low-level visual properties can affect
perceived duration.

The question of which aspect of visual complexity
modulates perceived duration is still open. In relation
to the internal clock theory, an important question is
whether the number of time units being accumulated
depends upon the visual properties of the stimuli. This

is because, even in a single-task condition, we cannot
exclude the possibility that nontemporal information-
processing load, resulting from the visual complexity
of the stimuli, may interfere with attention to time. In
principle, different amounts of visual complexity
could modulate the short-term description of the
information or ‘‘attentional template’’ (Duncan &
Humphreys, 1989) and, to a certain degree, visual
working memory (Baddeley, 1986). The question as to
whether such an influence on attention would be
enough to generate a bias in perceived duration has
not been tested. Similarly, it is unclear whether
nonsemantic image properties alone are sufficient to
detract attention from timing. This is relevant because
it would distinguish perceptual processes that have an
effect on attention, at least at the point of bias
temporal processing, and those that do not have it.
Moreover, any study of complexity faces the problem
of selecting a definition and a measure of visual
complexity. The current work tried to unravel this
research issue by analyzing both subjective complexity
and subjective duration.

Figure 1. (A) Stimuli adopted by Cantor and Thomas (1977) to examine the role of pattern area and perimeter on temporal

judgments. (B) Examples of test images from Cardaci et al. (2006). These images were classified by intuitive complexity: high

complexity (top), medium complexity (middle), low complexity (bottom). Figure 1 is an adapted picture with permission from the

copyright holders.

Journal of Vision (2014) 14(14):3, 1–18 Palumbo, Ogden, Makin, & Bertamini 3

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933686/ on 01/19/2016



What is visual complexity, and how
can we measure it?

The concept of complexity applied to visual images
has been the subject of investigation in different
disciplines, including cognitive science, psychology, and
computer science. Several definitions of visual com-
plexity as well as methodologies to measure it have
been proposed. Visual complexity is broadly defined as
the level of detail or intricacy contained within an
image (Snodgrass & Vanderwart, 1980). It has been
suggested that perceived complexity correlates posi-
tively with the amount of variety in a picture
(Heylighen, 1997) and that it corresponds to the degree
of difficulty people show when describing a visual
stimulus (Heaps & Handel, 1999). In psychology, there
has been a focus on subjective measures of complexity,
relying on participants’ reaction times or evaluations
through rating scales. Recently, a study based on the
method of hierarchical grouping of real indoor scenes,
in which participants divided scenes into successive
groups of decreasing complexity, identified different
factors that contribute to perceived complexity: num-
ber of objects, clutter, organization, symmetry, and
changes in colors (Oliva, Mack, Shrestha, & Peeper,
2004).

It is clear that stimulus complexity is multidimen-
sional and that the representation of image complexity
can be influenced by memory. This is confirmed by
evidence that familiarity correlates negatively with
perceived complexity (Forsythe, Mulhern, & Sawey,
2008). McDougall, de Bruijn, and Curry (2000) showed
that visual complexity modulates response latency for
icon/symbol concreteness (i.e., the extent to which
icons depict objects or people from the real world) and
semantic distance (the closeness of the relationship
between an icon and its function).

In summary, the role of complexity depends on the
kind of stimuli employed and on the way in which
visual complexity is defined, manipulated, and mea-
sured. The use of visual scenes, for instance, makes it
difficult to establish which dimension of visual com-
plexity (i.e., low-level spatial properties or high-level
semantic properties) affects perceived duration. There-
fore, it is necessary to find an index of visual complexity
that quantifies perceived complexity reliably.

Theories of image processing describe local feature
extraction. Basic perceptual components of an image
are taken into consideration, such as edges, which
combine to form shapes and detail (Beck, Graham, &
Sutter, 1991). For instance, a perimeter detection
measure locates edges by examining sudden changes in
intensity (Zhang & Lu, 2004). These contour-based
techniques are not sensitive to familiarity effects. Other
approaches include the Structural Information Theory

(Leeuwenberg, 1968; Leeuwenberg & van der Helm,
2013), which provides a unique measure of complexity
and which is beyond the scope of this work.

Complexity and image compression

A different approach is based on algorithmic
information theory (in computer science) and com-
pression (Donderi, 2006a, 2006b). The compression of
a picture generates a string of numbers that corre-
sponds to the organization of that picture, thus
revealing its information content. A more complex
picture will have more elements, less redundancy, and a
longer file string. The ratio between the compressed file
format and its original version provides an index of
image complexity. Forsythe, Sheehy, and Sawey,
(2003), inspired by McDougall and colleagues (2000),
adopted a computer compression algorithm expressing
six icon properties: icon foreground, number of discrete
objects, number of holes, icon edges, and homogeneity
in icon structure. The strongest correlates of perceived
complexity (McDougall et al., 2000) were structural
variability (rs ¼ .65) and edge information (rs ¼ .64).

Although computer-based measures of visual com-
plexity, such as the GIF ratio, correlate with subjective
judgments (Donderi, 2006b; Forsythe et al., 2008;
Forsythe et al., 2003), these tests employed electronic
charts and radar screens (Donderi, 2006b), icon designs
(Forsythe et al., 2003), or line drawings (Forsythe et al.,
2008). In the current studies, we extended this approach
to abstract images that were unfamiliar to our
observers. We used checkerboards with black and white
squares, and in every trial, the configuration was
different while total size, luminance, and numerosity
were controlled for.

It has been reported that objective complexity
metrics tend to correlate highly with one another (see
Simon, 1972; see also van der Helm, 2000, chapter 2 in
van der Helm, 2014). In our study, we decided to
measure complexity by means of image compression
and, in particular, the GIF algorithm. We adopted the
GIF index because there are previous studies that used
it for assessing visual complexity and also because it is
lossless unlike other compression algorithms such as
JPEG (Forsythe et al., 2008).

Summary of studies

We report two studies, using two different sets of
images. Each study is divided in two parts; Experiments
1A and 2A evaluated the link between indexes of
complexity and subjective complexity for that specific
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set of images. Experiments 1B and 2B tested the link
between complexity and perceived duration.

To measure complexity, we used the GIF index
defined as the ratio of the size of the original image and
the compressed version of the image. A GIF index of
one means that there was no reduction in size; an index
close to zero means that a minimal code was sufficient
to encode the image. We preferred the GIF index to the
inverse, known as GIF ratio (Forsythe et al., 2008)
because the GIF index can be thought of as measuring
complexity (higher values, less redundancy).

Experiments 1A and 2A confirmed that the GIF
index is a useful tool for capturing visual complexity
for this type of images. It was therefore included as a
predictor for perceived duration in Experiments 1B and
2B.

Study 1

In Experiment 1A, we validate the use of the GIF
compression algorithmic index as a measure of
objective complexity of meaningless, abstract pat-
terns. Previous research found a correlation between
computational measures of complexity, especially
based on JPEG compression, and human judgments
of complexity with highly detailed and colored
stimuli (Donderi, 2006a). However, for different
classes of images, different measures of complexity
may be required. The GIF compression is based on
the Lempel-Ziv-Welch ‘‘lossless’’ data compression
algorithm. By contrast, the JPEG technique is a
‘‘lossy’’ compression and works better with limited
colorization and line drawings (Forsythe et al., 2008).
The stimuli used in Experiment 1A were novel black-
and-white block patterns for which the correlation
between objective and subjective measures of com-
plexity was unknown. The aim was to evaluate
structural and compression methods that provide a
quantification of perceived complexity for this class
of stimuli.

In Experiment 1B, subjective duration for the same
type of patterns was measured with a prospective
paradigm: Participants were required to estimate the
duration of the visual pattern selecting one temporal
value (in seconds) among different options on a
continuous scale. Based on the findings of Cardaci et al.
(2006, 2009) one might expect that visual complexity
could lead to an underestimation of duration. Howev-
er, when complexity is manipulated in the context of
scenes, it involves a certain degree of cognitive and
associative processes. In this case, a distinction between
visual complexity and a more general cognitive
complexity is difficult (Harper, Michailidou, & Stevens,
2009). Therefore, the effect found on perceived

duration may be due to the interaction between higher
cognitive processing and the analysis of image dura-
tion.

Experiment 1A

Method

Participants: Ten participants took part in Experiment
1A (age range: 19–45; one left-handed; five females).
All participants had normal or corrected-to-normal
vision. They provided written consent for taking part
and received £10 as reimbursement. The experiment
was approved by the Ethics Committee of the
University of Liverpool and was conducted in accor-
dance with the Declaration of Helsinki (2008).
Stimuli and apparatus: Stimuli consisted of a matrix
with 10 · 10 squares (320 · 320 pixels, each square 32
· 32 pixels). The spatial distribution of the items
changed from pattern to pattern whereas the black/
white ratio (40 black dots/60 white dots) was the same
as to keep contrast, luminance, and surface area
constant (Figure 1A). In total, 1,500 patterns were
created in Psychopy software (Peirce, 2007).

Each image was exported in GIF and BMP formats.
Subsequently, these two files were processed in
MATLab R2010b to obtain the GIF compression
index for each image. A GIF index is defined as the
percentage of the image after compression (i.e., 50
means the image size if half after compression). The
patterns were scanned from left to right (for simplicity,
we call it the horizontal GIF index). This index ranged
between 5.89 and 7.14 (i.e., 7.14¼high complexity; 5.89
¼ low complexity).

Next, 180 stimuli were selected on the basis of their
GIF index. This selection avoided a normal distribu-
tion of images in which the majority would fall into a
middle level of complexity. The selected 180 patterns
ranged from the lowest to the highest complexity rates
obtained for these images, thus ensuring greater
variability and sampling of the whole range. This
generated six subsets of 30 images each. Within each
subset, images shared the same GIF index value (see
Figure 2A) within a narrow tolerance margin.

In addition to a horizontal GIF index, a vertical GIF
index was also generated for each image. The
horizontal and vertical compressions are sensitive to
different structure in the image, and including both of
them gives a much better overall measure of internal
structure for these patterns.

Participants sat at approximately 60 cm of the
distance from the screen. Stimuli were presented on a
1280 · 1024 DELL M993s 19-in. CRT monitor at 60
Hz.
Experimental design and procedure: The experiment
started with the instructions, followed by the presen-
tation of the stimuli in a random sequence. In a first
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familiarization stage, each pattern was presented on a
gray background for 500 ms, and observers did not
have to express any judgments. This slideshow pro-
vided participants with information about the type and
range of the experimental stimuli.

Next, the procedure changed so that each trial
started with a fixation cross at the center of a gray
background for 500 ms, then the image appeared and

remained on screen until response. The task was to rate
complexity on a six-point scale, ranging from very
simple (1) to very complex (6) by pressing the
corresponding number on the keyboard (Figure 2B).

Participants first completed a practice block of 12
trials. They then completed 12 blocks of 15 experi-
mental trials. The experimental trials were identical to
the practice with the exception that novel images were

Figure 2. Experiment 1A. (A) Illustration of the stimuli. GIF horizontal (H) and vertical (V) refer to the mean values for all 30 images

belonging to each complexity level. Only three examples are shown here for reason of space. (B) Illustration of the procedure.
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presented. Participants were encouraged to take a
break at the end of each block. The experiment lasted
approximately 20 min.

Analysis

Ratings for each image were correlated to the
corresponding GIF horizontal and vertical indexes. A

correlation analysis was also conducted to assess the
agreement between participants’ judgments.

Results

The results are illustrated in Figure 3. Descriptive
statistics showed that mean responses on the six-point
scale ranged between 3.16 (low complexity) and 4.43
(high complexity).

Interestingly, there was a weak correlation between
GIF horizontal and vertical (r ¼ .160, p , 0.032).
However, both GIF indexes correlated positively with
subjective measure of complexity (GIF horizontal: r¼
.643, p , 0.001; GIF vertical: r ¼ .592, p , 0.001)
although the correlation was stronger with the hori-
zontal index. Moreover, subjective measures of com-
plexity did correlate across participants (mean r¼ .637,
SD¼ .09; ps , 0.05).

Discussion

This study showed that compression-based com-
plexity measures can differentiate visual complexity for
unfamiliar, abstract, black-and-white block patterns.
The comparison between GIF horizontal and GIF
vertical revealed that the scanning direction of the
pattern produced different complexity indexes although
there was a positive correlation between the two.
Importantly, the agreement between individual judg-
ments was also moderately high (r ¼ .64), which
suggests that humans can provide consistent evalua-
tions of visual complexity.

In Experiment 1A, we found that participants were
still able to judge visual complexity in a systematic way
even if the range of differences in complexity across
patterns was limited and all images looked quite
similar. Participant complexity judgments were related
to the measure of visual complexity based on the GIF
index. Next, the stimuli employed and processed in
Experiment 1A were used in Experiment 1B to assess
the influence of visual complexity on perceived pattern
durations.

Experiment 1B

We employed the abstract patterns that were
generated in Experiment 1A because they had no
semantic content. Visual complexity for these images
was defined on the basis of the GIF indexes (horizontal
and vertical), and we measured whether this would
predict perceived duration. As Experiment 1A revealed
a difference between horizontal and vertical GIF
indexes, in Experiment 1B, we assessed whether the two
indexes predicted duration in a different fashion. The
evaluation of pattern duration was achieved by

Figure 3. Results of Experiment 1A. (A) GIF horizontal plotted

against GIF vertical. (B) Participants’ perceived complexity (y-

axis) as a function of GIF horizontal index (x-axis). (C)

Participants’ perceived complexity (y-axis) as a function of GIF

vertical index (x-axis).
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employing a prospective timing paradigm in which
participants were required to estimate the duration of
the visual pattern, selecting one temporal value (in
seconds) from different options on a continuous scale.

Method

Sixteen participants with normal or corrected-to-
normal vision were employed in the current experiment
(age range: 17–76; three left-handed; six females).
Stimuli were the same visual patterns employed in
Experiment 1A, in which complexity was defined by the
GIF compression method. The stimuli were presented
through the same apparatus used in Experiment 1A.

We employed a repeated-measure design with factors
of GIF index (continuous variable ranging from 5.89 to
7.14) and duration expressed in seconds (six levels:
0.25, 0.50, 0.75, 1.00, 1.25, 1.50). In addition, seven
duration levels (0.125, 0.375, 0.625, 0.875, 1.125, 1.375,
1.625) were inserted throughout the experiment to add
more variability in the temporal scale and contrast
habituation effects. The dependent variable was the
estimated duration of pattern presentation.

The experiment started with the instructions fol-
lowed by a demo showing the entire range of pattern
durations that participants needed to estimate in the
experiment. In the demo, the stimulus consisted of a
white quadrant (500 · 500 pixels), which, at the center,
contained a full black circle (100 · 100 pixels). The
duration was indicated on the top of the quadrant
(Figure 4A). Following the demo, 12 practice trials
were presented to train participants with the task. Each
trial started with a black fixation cross on a gray
background displayed at the center of the screen for
500 ms followed by the pattern. As soon as the stimulus
disappeared, the response scale showing the entire
range of durations was displayed on the bottom of the
screen. Participants provided their response by clicking
the temporal value on the scale with a mouse. The
intertrial interval varied between 1.50 and 2.50 at equal
steps of 0.25 s. The order of trials was randomized
across participants. Once the practice was completed,
participants received 12 blocks of 15 experimental trials
(see Figure 4B for a trial illustration). The experiment
lasted 30 min.

Figure 4. Experiment 1B. (A) List of durations in seconds. The numbers in gray were included in the visual scale used to respond but

were not used in the actual stimulus presentation. (B) Example of the structure of one trial.
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Analysis

We first tested whether actual duration predicted
subjective duration, which would merely show that
participants were doing the task. More interestingly, we
tested whether pattern complexity, as measured by GIF
indices and subjective complexity, would predict
subjective duration. Rather than using a standard
regression analysis with several predictors (actual
duration, GIF horizontal, GIF vertical, and subjective
complexity), we used the more powerful multilevel
linear analysis, which takes data points from every trial
as well as summary statistics from each participant.

Random and fixed parts form a random intercept
multilevel model. In the random part, parameters are
calculated to reflect variability at the various levels of
hierarchy in the model. We inserted participants and
trials, the latter nested within the former, as random
factors. In the fixed part, statistically unbiased inter-
cepts are calculated through taking the random
parameters of variability into account. Fixed factors in
our design were horizontal and vertical GIF indexes,
subjective ratings of complexity and actual pattern
duration. The analyses involved only the trials with the
six main experimental durations (0.25, 0.50, 0.75, 1.00,
1.25, 1.50 s), thus excluding the filler trials. In a second
model, only the fixed part was entered. A likelihood
ratio test was conducted by comparing the likelihood
values of the two models with a chi-squared analysis.
This comparison determines if participants represent a
significant factor of variability. The analysis was
carried out in MLwiN (Rasbash, Charlton, Browne,
Healy, & Cameron, 2009). In the model, predictors
were grand-mean centered. Estimated durations were
continuous dependent variables with parameter esti-
mates being established through iterative generalized
least squares (Rasbash, Steele, Browne, & Goldstein,
2012).

Results

Results of the first model are reported in Table 1 and
illustrated in Figure 5. Overall pattern durations were

underestimated. The multilevel linear analysis showed
that experimental durations predicted estimated dura-
tions. However, the analysis also revealed that GIF
indexes, horizontal and vertical, and subjective evalu-
ations of complexity were not significant predictors of
estimated durations. The likelihood ratio test revealed
that participants carried significant variability in the
data (p , 0.001).

Discussion

The main result of Experiment 1B was that visual
complexity as measured by GIF index did not affect
subjective durations of abstract patterns. Therefore,
perceived duration is not influenced by visual com-
plexity per se, and other factors, such as the type of

Mean estimated duration

b SE Z

Intercept 0.583 0.044 13.250

Duration 0.544 0.008 68.000

GIF horizontal 0.003 0.014 0.214

GIF vertical 0.008 0.014 0.571

Subjective complexity �0.005 0.009 �0.556
GIF horizontal · GIF Vertical �0.025 0.043 �0.581

Table 1. Regression outcome in which mean of estimated
duration was the DV. Notes: Z scores � 1.96 mean that b is
significant at the 5% level.

Figure 5. Results of Experiment 1B. (A) Estimated duration (y-

axis) as a function of GIF horizontal index (x-axis) and duration

(separate lines). (B) Estimated duration (y-axis) as a function of

GIF vertical index (x-axis) and duration (separate lines). (C)

Estimated duration (y-axis) as a function of subjective

complexity (x-axis) and duration (separate lines).
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content, may be critical. This outcome suggests that it
is only when images have semantic content, which leads
to an increase in attention, that complexity exerts an
influence on perceived duration.

At this stage, a conclusive explanation for the lack of
effect is premature: The images had a limited range in
complexity. Although we selected exemplars ranging
from the lowest to the highest GIF index, the patterns
were all relatively complex (participants selected the
middle points on the scale) and this, in line with the
attention model within the internal clock framework,
could explain why participants’ tendency was to
underestimate durations. Therefore, the range of
complexities may have been too limited for an effect on
perceived duration to manifest.

Study 1 established that the visual system is sensible
to subtle variations of visual complexity although these
variations did not influence perceived durations. In
Study 2 (see Experiment 2A), we generated a new set of
stimuli with more distinctive levels of complexity.

Study 2

Experiment 2A

In Experiment 2A, we defined visual complexity in
terms of the number of items contained in each pattern
(numerosity). We adopted this parameter to increase
differences in complexity across the stimuli, thus
obtaining a new set of black-and-white block patterns.
Moreover, we also examined both GIF horizontal and
GIF vertical and their relationship to perceived
complexity. The aim was the same as that of
Experiment 1A but with an increased range of stimuli.
We expected to find a higher correlation between GIF
and numerosity.

Method

Ten participants took part in the experiment (age
range: 17–76; all right-handed; six females), and all had
normal or corrected-to-normal vision. In this experi-
ment, the matrix contained a number of squares
ranging from 25 (5 · 5) to 900 (30 · 30). As in
Experiment 1A, the black/white ratio (40/60) was kept
the same. This means that the size of the items differed
as a function of numerosity (i.e., the least the number
of items and the largest the size of each item), and as
such, the stimuli contained low and high spatial
frequencies. There were six types of matrices; the
difference in numerosity served as one measure of
complexity (Figure 6A).

The GIF indexes were computed for each image and
resulted in 4.47 (GIF horizontal) and 4.45 (GIF

vertical) for low complexity (5 · 5 items in the
pattern) and in 10.43 (GIF horizontal) and 10.42 (GIF
vertical) for high complexity (30 · 30 items in the
pattern). As the stimulus was approximately 108 of
visual angle wide, the main spatial frequencies were
0.5 c/8 and 3 c/8. We adopted the same design and
procedure as for Experiment 1A. The only difference
was in the way stimuli were constructed. The
relationship between numerosity and subjective com-
plexity was tested with a correlation analysis. Partic-
ipants’ ratings were correlated with both numerosity
and GIF horizontal and vertical indexes. A correlation
analysis was also carried out to verify the level of
agreement across participants.

Results

Results are shown in Figure 7. Responses ranged
between 1.43 (low complexity) and 5.81 (high com-
plexity). In Experiment 2A, we found a strong
correlation between GIF horizontal and vertical (r¼
.972, p , 0.000). Both numerosity and GIF indexes
highly correlated with subjective judgments (numer-
osity: r¼ .963, p , 0.001; GIF horizontal index: r¼
.971, p , 0.001; GIF vertical index: r¼ .977, p , 0.001).
A high correlation was found between numerosity and
both GIF indexes (numerosity with GIF horizontal: r¼
.982, p , 0.001; with GIF vertical: r¼ .981, p , 0.001).
Finally, subjective measures of complexity strongly
correlated across participants (mean r¼ .937, SD¼ .02;
all ps , 0.001).

In addition, a survey was conducted with 12
participants (age range: 19–34, six males) in order to
assess whether they would use ‘‘numerosity’’ as a
concept to describe the range of the new stimuli set.
On a sheet of paper, we illustrated six examples of
patterns, one for each level of complexity (see second
row in Figure 6). A list of concepts that would
describe the stimuli was provided: contrast, numer-
osity, density, size, and complexity. Participants
indicated how much each of the concepts described the
range of the stimuli. The response was given by
placing a tick along a visual scale (from ‘‘not much’’ to
‘‘a lot’’), one for each of the dimensions. The position
of each tick was measured with a ruler. The two
dimensions that were deemed most appropriate to
describe the stimuli were numerosity (M ¼ 10.03 cm;
SD ¼ 3.88 cm) and density (M ¼ 10.98 cm; SD ¼ 3.09
cm).

Discussion

Experiment 2A showed that the numerosity of
items in a pattern can be used as a measure of
complexity that matches subjective ratings of com-
plexity. The GIF indexes of the stimuli were also
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different for different levels of numerosity, and it
provided a good measure of perceived complexity as
in Experiment 1A. From Experiment 2A, it emerged
that participants could easily detect the differences in
complexity, and they used a wider range of points on
the scale as compared to Experiment 1A. Moreover,
the correlation between objective and subjective

measures of complexity are higher in Experiment 2A
than in Experiment 1A. Therefore numerosity ren-
dered the complexity of images more distinguishable.
In the next experiment, the new set of stimuli was
employed to examine the influence of visual com-
plexity, as defined by item numerosity and GIF
indexes, on perceived duration.

Figure 6. (A) Illustration of the six types of matrices. GIF horizontal (H) and vertical (V) refer to the mean values for all 30 images

belonging to each numerosity level. Only three examples are shown here for reason of space. (B) Illustration of the procedure.
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Experiment 2B

In Experiment 1B, visual complexity did not predict
estimated durations. One possible explanation for this
was the limited range of stimulus complexity. Despite
the fact that observers could discriminate levels of
complexity, perhaps greater differences are necessary
to affect perceived duration. In Experiment 2B, we
employed stimuli with a wider range of complexity.
We employed the same prospective paradigm used in
Experiment 1B in which participants estimated the
duration (in seconds) of the visual pattern, selecting
the appropriate temporal value on the continuous
scale.

Both symbolic and nonsymbolic representations of
number influence perceived duration (Dormal, Seron,
& Pesenti, 2006; Dormal & Pesenti, 2013; Oliveri et al.,
2008; Vicario et al., 2008; Xuan, Zhang, He, & Chen,
2007). The duration of presentation of small Arabic
digits are underestimated relative to the duration of
large Arabic digits (Oliveri et al., 2008). When timing
the duration of nonsymbolic numerical displays (i.e.,
dots on a screen), congruent numerical information
facilitates temporal processing and incongruent nu-
merical information impairs temporal processing ac-
curacy (Dormal et al., 2006; Xuan et al., 2007). Thus, in
the current experiment, we may expect longer duration
estimates for more complex displays when complexity
is defined by number of items in a pattern.

Method

Twenty-five participants with normal or corrected-
to-normal vision took part in the experiment (age
range: 18–71; four left-handed; 15 females). We used
the stimuli that were selected in Experiment 2A, and
the complexity levels were defined by the numerosity

parameter (5 · 5 to 30 · 30). The stimuli were
presented with the same apparatus used in Experi-
ment 2A. The experimental design involved two
within-subjects factors: numerosity (six levels: 5 · 5,
10 · 10, 15 · 15, 20 · 20, 25 · 25, 30 · 30 items)
and duration in seconds (six levels: 0.25, 0.50, 0.75,
1.00, 1.25, 1.50).

As with Experiment 1B, the variability of the scale
was increased, adding other seven duration levels
(0.125, 0.375, 0.625, 0.875, 1.125, 1.375, 1.625). The
procedure was identical to the one in Experiment 1B.
Participants received instructions and observed the
demo with the range of durations that they needed to
rate in the experiment (Figure 8A).

Analysis

One aspect of the current experiment was that to
increase variability in complexity a high number of
small-sized items (high complexity¼30 small items per
side) was contrasted to a low number of large-sized
items (low complexity ¼ five large items per side).
Although this manipulation made pattern complexity
pop out, here complexity entailed two spatial prop-
erties (number and size of items) that could have
opposite effects on perceived durations. It has been
reported that large-sized items generate overestima-
tions of duration (Ewart & Cantor, 1975; Xuan et al.,
2007) whereas a low numerosity of items results in
shorter perceptions of duration (Oliveri et al., 2008;
Xuan et al., 2007). Therefore, having both these two
properties in the stimuli could, in principle, lead to a
null effect of complexity on perceived durations. A
multilevel linear analysis allowed verifying the con-
tribution of each of these factors to the variability of
perceived duration. In the random intercept model, we
inserted numerosity and the horizontal and vertical
GIF indexes as the fixed factors, and we controlled for
their interaction effect. A third fixed factor was the
actual durations of the stimuli (0.25, 0.50, 0.75, 1.00,
1.25, 1.50 s). The random part of the model consisted
of participants and trials, the latter nested in the
former. A second model was generated only with the
fixed part. A likelihood ratio test was conducted to
determine if intraparticipant variability was statisti-
cally significant.

Results

Results are illustrated in Table 2 and in Figure 9.
The multilevel linear analysis confirmed that estimated
durations were predicted by the actual durations and
that neither numerosity nor GIF indexes were signif-
icant predictors of estimated duration. The likelihood
ratio tests revealed that participants’ differences were
statistically significant (p , 0.000).

Figure 7. Results of Experiment 2A. (A) Estimated complexity (y-

axis) is plotted as a function of numerosity (x-axis).
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Discussion

The results of Experiment 1B were confirmed by
Experiment 2B. Subjective duration was not affected by
visual complexity, either when it was expressed in terms
of compression indexes or when it was defined by item
numerosity or different spatial frequencies. This was
despite the increased range of complexities used. Our
results are in contrast to those reported in the
literature, in which complexity did affect image

duration (Cantor & Thomas, 1977; Folta-Schoofs et
al., 2014; Hogan 1975). However, in the past literature,
different dimensions of visual complexity were manip-
ulated, i.e., by changing the area or the perimeter of the
patterns (Cantor & Thomas, 1977). Importantly, in
other studies (Cardaci et al., 2006, 2009), visual
complexity was applied to the context of scenes or
textured/colored objects. These classes of stimuli entail
associative, semantic operations and engage partici-
pants in higher cognitive processing. Therefore, an
increase in complexity in these stimuli led to an
increased use of attentional resources, which, in turn,
affected the perception of time as reflected in an
underestimation of image durations.

Conversely, in our studies, we generated visual
patterns that lacked meaning and semantic content so
that the manipulation of complexity strictly altered
only the spatial properties of the stimuli. This
manipulation failed to modulate attention and there-
fore perceived duration.

Similarly, our findings also contrast previous studies
showing an effect of numerosity on perceived duration
(Dormal et al., 2006; Dormal & Pesenti, 2013; Xuan et

Mean estimated duration

b SE Z

Intercept 0.736 0.027

Duration 0.682 0.008 85.250

Numerosity �0.005 0.003 �1.667
GIF horizontal 0.013 0.009 1.444

GIF vertical 0.012 0.009 1.333

GIF horizontal · GIF Vertical �0.007 0.008 �0.875

Table 2. Regression outcome in which mean estimated duration
was the DV. Notes: Z scores � 1.96 mean that b is significant at
the 5% level.

Figure 8. Experiment 2B. (A) List of durations in seconds. The numbers in gray were included in the visual scale used to respond but

were not used in the actual stimulus presentation. (B) Example of the structure of one trial.
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al., 2007). Generally, these studies have demonstrated
that longer duration estimates are given for greater
numerosity. It is important to note, however, that
previous work has generally used symbolic number
representations (Xuan et al., 2007) or nonsymbolic
representations in which surface area was not con-
trolled for (Dormal et al., 2006). The absence of control
for surface area means that previously used represen-
tations of ‘‘many’’ not only contained more items than
representations of ‘‘few,’’ but they also covered a
greater surface area. In our studies, surface area
remained constant as numerosity varied; thus, the
absence of an effect of numerosity on perceived
duration suggests that increased surface area may have
contributed to the previously observed effects. Finally,
our results were inconsistent with Aaen-Stockdale et al.

(2011): Spatial frequency had no effect on subjective
duration. However, a direct comparison between the
two outcomes is difficult due to different stimuli and
paradigms involved.

General discussion

Previous studies have suggested that complexity
biases the perception of duration. For example,
Cardaci et al. (2006, 2009) reported that perceived
durations tend to be underestimated when stimuli
contain a high level of complexity. However, this might
depend on the type of stimuli used and on how
complexity is manipulated and whether the semantic
content is altered. Previous work is unclear about the
effect of purely visual changes in complexity on
subjective duration.

First, we tested whether two GIF algorithms
(scanning the pattern in horizontal and vertical
directions) correlated with subjective visual complexity.
The results confirmed a positive correlation between
the two GIF indexes although they did not fully
overlap. This suggests that the direction in which the
pattern is scanned affects the structure that is
computed.

Second, we tested the effect of visual complexity on
subjective duration. There were no effects of complex-
ity on perceived duration in Experiment 1B. In
Experiment 2B, the range of complexity was increased
by use of patterns with a varying number of elements.
This resulted in a high correlation between the GIF
indexes and subjective judgments; however, complexity
still had no effect on subjective duration.

Therefore, in Experiment 2B, the lack of effect on
perceived duration was similar to Experiment 1B
although the difference in complexity across patterns
was more evident. Our study shows that when visual
complexity (free of any semantic info) varies in a subtle
(Study 1) or in a less subtle way (Study 2), observers
can discriminate the difference without this affecting
time perception.

When does the complexity of stimuli affect
perceived duration?

The current study showed that there are different
ways to define and quantify the complexity of visual
stimuli, and this is related to the kind of stimuli used.
Moreover, our experiments clarified that not all kinds
of complexity have an effect on perceived duration.
When complexity entails specific spatial/structural
properties (mere visual complexity) of abstract stimuli,
complexity has no effect on subjective duration.

Figure 9. Results of Experiment 2B. (A) Estimated duration (y-

axis) as predicted by numerosity (x-axis) and duration (separate

lines). (B) Estimated duration (y-axis) as predicted by GIF

horizontal index (x-axis) and duration (separate lines). (C)

Estimated duration (y-axis) as predicted by GIF vertical index (x-

axis) and duration (separate lines).
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Although a recent study has reported an effect of
spatial frequency (Aaen-Stockdale et al., 2011), there
were too many differences in the task and in the stimuli
to compare our results directly.

What about the element size–complexity confound
in Experiment 2B? Ewart and Cantor (1975) and
Oliveri et al. (2008) reported that low numbers and
small objects reduce subjective duration whereas high
numbers and large objects increase subjective duration.
Could this have nullified the effect of complexity on
duration? We examined this possibility in our analysis,
which took into account complexity differences within
each level of numerosity, and found no evidence for an
effect of complexity.

There might be another reason why we did not find
an effect of visual complexity on perceived duration. In
principle, visual complexity can also have an effect on
arousal. Increased levels of arousal could make the
internal clock accumulate more time units, which is
reflected in temporal overestimations (Gil & Droit-
Volet, 2012; Gupta & Cummings, 1986; Penton-Voak
et al., 1996). This could have cancelled the opposite
effect, in which complexity increases attention to the
stimuli, distracts from the timing task, and ultimately
results in temporal underestimation. However, there
are no obvious reasons why our stimuli should have
modulated arousal. Factors that typically affect arousal
involve dynamic stimuli (i.e., high-frequency auditory
or flickering images at certain frequencies; Droit-Volet,
2003), physiological variations (i.e., heart rate, skin
temperature; Gupta & Cummings, 1986; Wearden &
Penton-Voak, 1995), or emotional aspects (i.e., pre-
dictability of stimuli, emotional content; Angrilli et al.,
1997; Rose & Summers, 1995). In our experiments,
visual complexity entailed only structural variations of
the patterns that did not involve any of the factors
above. Moreover, the way we manipulated the stimuli
kept luminance and contrast the same across stimuli.
Hence, it is unlikely that our stimuli had an impact on
arousal.

We started with the following research question: Do
differences in perceived complexity always affect
perceived duration? On the one hand, visual complexity
implies an increase of visual processing and also
attentional resources. This increased attentional load at
the perceptual level could reduce the amount of
attention paid to time, resulting in a reduction in
subjective duration. On the other hand, temporal
monitoring could recruit higher-level networks that are
independent from visual analysis. If so, an increased
attentional load at the perceptual level would not result
in a reduction of subjective duration.

Our empirical results support the second hypothesis.
This is important because it suggests that complexity
alters subjective duration only when visual complexity
has semantic content and engages participants in

associative and cognitive processes. Therefore, our
studies extend past results in that they reduce the range
of possible dimensions of visual complexity that have
an effect on the perception of pattern duration.

Conclusion

It is possible to define and measure visual complexity
by adopting different methods. We explored the use of
a computer-based technique to measure complexity for
black-and-white block abstract patterns. This part of
our study extended the current knowledge on the use of
objective and computer-based indices to quantify
complexity for a new class of stimuli. Observers’ ratings
of complexity were significantly related to the GIF
index. The second part of our study tested how
complexity relates to perceived duration. We found
that when visual complexity entails only spatial/
structural aspects of the stimulus, it does not lead to
underestimation of stimulus duration. Previous positive
results (Cardaci et al., 2006; Harper et al., 2009) may be
due to variations in complexity at a higher semantic or
associative level. Our results clarified that these two
complexity dimensions, visual and associative, play a
different role on the perception of stimuli duration.

Keywords: visual complexity, image compression,
attention, estimated durations
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